CS 302: Introduction to Programming in Java

Lecture 13




What Is the 3-step processing for using
Objects (think Scanner and Random)?

Do objects use static methods or non-static
(how do you know)?

What value does x[0] have If:

String[] X = new String[5];
How are angle brackets used in ArrayLists?
What are Wrapper Classes?



ArrayList<type> variableName = new ArrayList<type>();

Must be a reference type (ex.
String) — cannot be primitive
(ex. int, double, boolean, char)

variableName.size() - returns the size of the ArrayList
as an int

variableName.add(element) - appends element to the
end of the list and automatically increases Its size

variableName.set(i, element)

0 <=1 < variableName.size() - sets variableName — i=
element



Reading Input

ArrayList<Double> testScores = new ArrayList<Double>();
while (in.hasNextDouble())

{

testScores.add(in.nextDouble());




. Stings -> stringName.
. Arrays -> arrayName.

Length with Arrays, ArrayLists, and Strings

. ArrayLists -> arrayList.size();

ength();
ength;




. Write a method to sort an ArrayList of Integers
using Selection Sort:

public static void selectionSort(ArrayList<Integer> data)

. Selection Sort (basically what humans usually do):

For each index Iin the array:

Find the current smallest element from [indexX...end]
Swap its value with the element currently in index


http://www.youtube.com/watch?v=6kg9Dx72pzs&feature=related

Object Oriented Programming (OOP)

. Programming style invented to enhance code
management and maintainability

. Basic Idea: split code into "objects"

. Each "object" represents a discrete thing or
iIdea (ex. a cash register, a phonebook, a

robot)

. Each object has its own set of methods for
creating an instance of an object and using
the object

. Code thus becomes an interaction of objects




Procedural Programming vs OOP

. Procedural . OOP

Programming . Goal — break code

. Goal — break code into discrete objects
down into sub-routines that interact with
and variables eachother

. Pro—easyto
maintain, can reduce
code volumn

. Con — Can take
longer to create

. Real-world
counterpart: a play

. Pro — can quickly
address the problem
at hand

. Con - Difficult to
maintain and adapt to
new problems

. Real-world
counterpart: a cooking

reciie




Objects in Java

. What objects have we already worked with?
. Implementing objects

. We do NOT code up individual objects
. Instead we define classes

— Each class represents a generic object (i.e. the

String class defines the behaviour for all
Strings)

. When we want to use an object we create a new

Instance of that object from the class code (use
the "new" keyword)

. Ex. Random randGen = new Random();




Each object must define its own methods (e.g.
a cash register object would have a method to
add prices)

Methods that can be invoked on objects =
Instance Methods (non-static)

Each object must have a special type of
iInstance method: a Constructor

A constructor creates a new instance of the
object (it Is called when you instantiate a new
object of this type)

Ex. Random randGen = new Random();

I

Constructor



ldea: Can treat objects as black boxes just like we
were treating methods

Ex. | don't need to know how the Random
constructor works or how the rand.nextInt() method is
Implemented as long as | know how to call it

Real-world example: | don't need to know how the
electronics in a computer work in order to use the
computer

User only needs to know the public interface = how
to interact with the object

Encapsulation = Using a public interface to hide
Implementation detalls



public class Phonebook

{

General Class Design

Your class code defines how every object of this type will work (a blueprint
for the object)

private data;

public Phonebook() //Constructor

{}

//IMethods someone using a phonebook would need

public String getPhoneNumber(String name)

{}
public String addNumber(String nam Someone using a phonebook object
0 doesn't need to know how these

methods are implemented, only what
arguments they expect and what
they return




Most instance methods can be divided into 2
types: Accessors and Mutators (also called
"getters" and "setters")

Accessors = methods that access data but do
not change the object

Mutators = methods that modfiy the object



In addition to having its own methods, most
objects need to store data in some way

Ex. a phonebook would need to store all the
names and numbers in the phonebook

To do this we user Instance Variables = variables
defined within a class

Ex. Phonebook might have 2 ArrayLists — one for
names and one for numbers

Instance variables are declared within the class
but outside any methods — this means any
method in the class can use these variables



public class Phonebook

{

orivate ArrayList<String> names,;

orivate ArrayList<String> numbers;
[/Constructor and other methods follow

}

Each instance of a phonebook will have its
own seperate copy of names and numbers

Note the "private" declaration
How would accessors and mutators work?



Similar to implementing the static methods we
have done before

Constructors intialize the instance variables,
do not return anything, and do not have a type

Constructors must have the same name as the
class (object)

Can have multiple constructors each that takes
In different parameters (ex. Random rand =
new Random() vs Random rand = new
Random(seed)



How can we implement a bank account
object?

What private instance data will we need?

What sort of Accessors and Mutators will we
need?

What will the constructor look like?



