
CS 302: Introduction to Programming in Java

Lecture 13

Review

● What is the 3-step processing for using

Objects (think Scanner and Random)?

● Do objects use static methods or non-static

(how do you know)?

● What value does x[0] have if:

String[] x = new String[5];

● How are angle brackets used in ArrayLists?

● What are Wrapper Classes?

Using an ArrayList Object

ArrayList<type> variableName = new ArrayList<type>();

variableName.size() - returns the size of the ArrayList
as an int

variableName.add(element) - appends element to the
end of the list and automatically increases its size

variableName.set(i, element)

0 <= i < variableName.size() - sets variableName i=
element

Must be a reference type (ex.
String) – cannot be primitive
(ex. int, double, boolean, char)

Reading Input

ArrayList<Double> testScores = new ArrayList<Double>();

while (in.hasNextDouble())

{

 testScores.add(in.nextDouble());

}

Length with Arrays, ArrayLists, and Strings

● Stings -> stringName.length();

● Arrays -> arrayName.length;

● ArrayLists -> arrayList.size();

Selection Sort
● Write a method to sort an ArrayList of Integers

using Selection Sort:

public static void selectionSort(ArrayList<Integer> data)

● Selection Sort (basically what humans usually do):

● For each index in the array:

– Find the current smallest element from [index...end]

– Swap its value with the element currently in index

http://www.youtube.com/watch?v=6kg9Dx72pzs&feature=related

Object Oriented Programming (OOP)

● Programming style invented to enhance code

management and maintainability

● Basic Idea: split code into "objects"

● Each "object" represents a discrete thing or

idea (ex. a cash register, a phonebook, a

robot)

● Each object has its own set of methods for

creating an instance of an object and using

the object

● Code thus becomes an interaction of objects

Procedural Programming vs OOP
● Procedural

Programming

● Goal – break code

down into sub-routines

and variables

● Pro – can quickly

address the problem

at hand

● Con – Difficult to

maintain and adapt to

new problems

● Real-world

counterpart: a cooking

recipe

● OOP

● Goal – break code
into discrete objects
that interact with
eachother

● Pro – easy to
maintain, can reduce
code volumn

● Con – Can take
longer to create

● Real-world
counterpart: a play

Objects in Java

● What objects have we already worked with?

● Implementing objects

● We do NOT code up individual objects

● Instead we define classes

– Each class represents a generic object (i.e. the

String class defines the behaviour for all

Strings)

● When we want to use an object we create a new

instance of that object from the class code (use

the "new" keyword)

● Ex. Random randGen = new Random();

Instance Methods

● Each object must define its own methods (e.g.
a cash register object would have a method to
add prices)

● Methods that can be invoked on objects =
Instance Methods (non-static)

● Each object must have a special type of
instance method: a Constructor

● A constructor creates a new instance of the
object (it is called when you instantiate a new
object of this type)

● Ex. Random randGen = new Random();

Constructor

Public Interface and Encapsulation

● Idea: Can treat objects as black boxes just like we
were treating methods

● Ex. I don't need to know how the Random
constructor works or how the rand.nextInt() method is
implemented as long as I know how to call it

● Real-world example: I don't need to know how the
electronics in a computer work in order to use the
computer

● User only needs to know the public interface = how
to interact with the object

● Encapsulation = Using a public interface to hide
implementation details

General Class Design
● Your class code defines how every object of this type will work (a blueprint

for the object)

public class Phonebook

{

 private data;

 public Phonebook() //Constructor

 { }

 //Methods someone using a phonebook would need

 public String getPhoneNumber(String name)

 { }

 public String addNumber(String name)

 { }

}

Someone using a phonebook object
doesn't need to know how these
methods are implemented, only what
arguments they expect and what
they return

Accessors and Mutators

● Most instance methods can be divided into 2

types: Accessors and Mutators (also called

"getters" and "setters")

● Accessors = methods that access data but do

not change the object

● Mutators = methods that modfiy the object

Instance Variables
● In addition to having its own methods, most

objects need to store data in some way

● Ex. a phonebook would need to store all the
names and numbers in the phonebook

● To do this we user Instance Variables = variables
defined within a class

● Ex. Phonebook might have 2 ArrayLists – one for
names and one for numbers

● Instance variables are declared within the class
but outside any methods – this means any
method in the class can use these variables

Instance Variables Example
public class Phonebook

{

 private ArrayList<String> names;

 private ArrayList<String> numbers;

 //Constructor and other methods follow

}

● Each instance of a phonebook will have its
own seperate copy of names and numbers

● Note the "private" declaration

● How would accessors and mutators work?

Implementing Instance Methods

● Similar to implementing the static methods we
have done before

● Constructors intialize the instance variables,
do not return anything, and do not have a type

● Constructors must have the same name as the
class (object)

● Can have multiple constructors each that takes
in different parameters (ex. Random rand =
new Random() vs Random rand = new
Random(seed)

Practical Example

● How can we implement a bank account

object?

● What private instance data will we need?

● What sort of Accessors and Mutators will we

need?

● What will the constructor look like?

